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ABSTRACT

The silicon nucleophile generated by copper(I)-catalyzed Si�B bond activation allows several γ-selective propargylic substitutions. The
regioselectivity (γ:R ratio) is strongly dependent on the propargylic leaving group. Chloride is superior to oxygen leaving groups in linear
substrates (γ:R > 99:1), and it is only the phosphate group that also shows promising regiocontrol (γ:R = 90:10). That leaving group produces
superb γ-selectivity (γ:R > 99:1) inR-branched propargylic systems, and enantioenriched substrates react with excellent central-to-axial chirality
transfer.

The ability of Rh�O and Cu�O complexes to activate
interelement linkages through σ-bondmetathesis is a facile
entry into the chemistry of main group element nucle-
ophiles.1 The synthetic potential of both rhodium(I)-2 and
copper(I)-catalyzed3 transmetalations of the Si�B bond4

and subsequent C�Si bond-forming reactions are cur-
rently being actively explored. The copper(I) catalysis is
particularly useful as an alternative method for the forma-
tion of silicon-based cuprates.5 We recently developed a
γ-selective synthesis of branched allylic silanes from linear
allylic chlorides using that copper(I)-catalyzed Si�B bond
activation (γ:R g 98:2).6 The excellent regiocontrol led us
to consider the related propargylic substitution (Ifγ-II
but not R-II, Scheme 1). The Fleming group had accom-
plished the copper(I)-mediated (enantioselective) prepara-
tion of allenylic silanes from propargylic substrates with
different leaving groups.7The corresponding catalysis is not
known,5 but there are reports of transition-metal-catalyzed
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propargylic displacements with silicon nucleophiles invol-
ving the transmetalation of interelement linkages. A semi-
nal paper by Szab�o et al. showed that palladium(II) pincer
complexes indeed catalyze the heterolytic cleavage of a
Si�Sn bond (left, Scheme 1), and the thus-formed reactive
Pd�Si intermediate participates in the γ-selective substitu-
tion of propargylic chlorides.8 Later, Sawamura et al.
adopted our rhodium(I)-catalyzed Si�B transmetalation
(yet without added water) and elaborated a practical
functional-group-tolerant allenylic silane synthesis with a
carbonate leaving group (middle, Scheme 1).9 In this
Letter, we demonstrate that our straightforward reaction
setup for copper(I)-catalyzed Si�B bond activation6 is
applicable to the γ-selective substitution of propargylic
chlorides as well as phosphates (right, Scheme 1).10�13

As we continued using the protocol for the allylic
substitution,6 we immediately began with a survey of
leaving groups (Table 1). Again, CuCN (5.0 mol %) and
NaOMe (2.0 equiv) in THFat�78 �Cwere routinely used,
but this time, only a slight excess of Suginome’s Me2Ph-
Si�Bpin reagent14 (1.2 equiv as opposed to 1.5 equiv) was
necessary. We were delighted to find that the γ:R ratios in
the propargylic substitution largely parallel those obtained
in the allylic transposition. The chloride leaving group
securedperfect regiocontrol (γ:R=100:0), andγ-selectivity

was also high for phosphate (γ:R = 90:10). The pro-
pargylic bromide reacted, however, with poor selectivity
(γ:R = 67:33) (Table 1, entries 1�3). The remaining
common oxygen leaving groups all favor R substitution,
and γ:R ratios are in fact good for carbamate and benzoate
(Table 1, entries 4 and 6). It is noteworthy that, compared
to Sawamura’s investigations,9,12a,13 the carbonate leaving
group yielded a poor γ:R ratio (Table 1, entry 5). Chemical
yields were generally lower for oxygen leaving groups than
those for chloride and bromide (quantitative yield).

The leaving group-dependent propargylic substitution
provides an access to both allenylic (γ-selectivity) and
propargylic (R-selectivity) silanes in synthetically useful
γ:R ratios. With our focus on SN

0-type substitution, we
extended the substrate scope for propargylic chlorides
(1a�1h, Table 2). All aryl- and alkyl-substituted precursors
were cleanly converted into allenes (Table 2, entries 1�6).
The parent compound, propargylic chloride, also yielded
the allene exclusively (Table 2, entry 7). In agreement with
our previous findings,6 the γ:R ratio was completely eroded
by a terminal Me3Si group (Table 2, entry 8).
While the chloride leaving group emerged as superior, it

would not be useful in enantioselective displacements as
enantioenriched R-chiral propargylic chlorides are not
available. Instead, R-chiral phosphates are easy to make,
and the γ:R ratio was also promising (Table 1, entry 3).
We therefore prepared the R-chiral propargylic phos-

phates (S)-3i (R = Ph) and (S)-3j (R = n-Bu) from the
known corresponding enantiopure alcohols, obtained by
enzymatic kinetic resolution. Subjecting those to our stan-
dard protocols afforded the chiral allenes with superb γ:R
ratios [(S)-3i/(S)-3jf(aR)-γ-7i/(aR)-γ-7j, Scheme 2].15

Gratifyingly, the central-to-axial chirality transferwas also

Scheme 1. Transition-Metal-Catalyzed Interelement Activation
in Propargylic Substitution with Nucleophilic Silicon

Table 1. Copper-Catalyzed Propargylic Substitution: Survey of
Leaving Groups

entry

propargylic

precursor

leaving group

X

γ:R
ratioa

yield

(%)b

1 1a Cl 100:0c 94

2 2a Br 67:33 98

3 3a OP(O)(OEt)2 90:10 66

4 4a OC(O)NHPh 6:94 42

5 5a OC(O)OMe 24:76 49

6 6a OC(O)Ph 5:95 47

aRatio of regioisomers determined by GLC analysis prior to pur-
ification. bCombined isolated yield after flash chromatography on silica
gel. cNo linear regioisomer detected by GLC analysis.
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good, and regioisomerically pure (aR)-γ-7i and (aR)-γ-7j
were isolatedwith 92% ee and>95%ee, respectively. The
absolute configurations of the allenylic silane were as-
signed by comparison with the reported optical rotation
of (aR)-γ-7j.9

The stereochemical course, that is SfaR, is identical to
that determined by the Sawamura group in related rho-
dium(I)-9 and copper(I)-catalyzed12a,13 propargylic substi-
tutions involving interelement bond activation. That was
rationalized by syn-selective 1,2-addition of the transition
metal nucleophile across the C�C triple bond followed by
anti-selective β-elimination. Based on that reasonable me-
chanism,we propose the catalytic cycle depicted in Scheme
3. The Cu�Si reagent V is generated from the Cu�OMe
complex III through σ-bondmetathesis (IIIfIVfV). The
chemoselectivity in that step is likely to be determined by
the electronegativity and/or Lewis acidity of boron over
silicon in Si�B. Intermediate V then reacts with I accord-
ing to the above-mentioned two-step sequence to yield γ-II
(IfVIfγ-II). Salt metathesis of Cu�X complex VII and

NaOMe regenerates III thereby closing the catalytic cycle
(VIIfIII).

Our protocol is also applicable to tertiary propargylic
phosphates. Representative functionalized 3k and 3l yiel-
ded fully substituted allenes γ-7k and γ-7l as single regioi-
somers (Scheme 4). These results compare nicely with the
rhodium(I)-catalyzed propargylic substitutions of the cor-
responding tertiary carbonates.9

In summary, we elaborated a general and practical pro-
pargylic substitutionwith the silicon nucleophile generated

Scheme 3. Proposed Catalytic Cycle

Table 2. Copper-Catalyzed Propargylic Substitution of Linear
Propargylic Chlorides

entry

propargylic

precursor R

γ:R
ratioa

yield

(%)b

1 1a Ph 100:0c 94

2 1b 4-MeC6H4 100:0c 78

3 1c 4-FC6H4 100:0c 88

4 1d n-Bu 100:0c 71

5 1e n-Pen 100:0c 80

6 1f c-Pr 100:0c 77

7 1g H 100:0c 65d

8 1h SiMe3 56:44 88

aRatio of regioisomers determined by GLC analysis prior to pur-
ification. bCombined isolated yield after flash chromatography on silica
gel. cNo linear regioisomer detected by GLC analysis. dVolatile
compound.

Scheme 2. Central-to-Axial Chirality Transfer in the Copper-
Catalyzed Propargylic Substitution of R-Chiral Phosphates Scheme 4. Copper-Catalyzed Propargylic Substitution of Ter-

tiary Propargylic Phosphates
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from a Si�B precursor. The reaction setup is simple, and
onlyCuCNandNaOMe are needed. The newprotocol is a
useful addition to the existing repertoire of regioselective
and enantioselective allenylic silane syntheses.16�19
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